Remark 2 on Groups
Let $(G, \circ)$ be a group and $a, b \in G$. The following holds:
i) | $(a^{-1})^{-1} = a$, |
ii) | $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$. |
Beweis
i) | According to Remark 1 on groups iv), there exists exactly one inverse element for $a^{-1}$. Since $a \circ a^{-1} = e$, $a$ is the unique inverse element for $a^{-1}$. It follows that $(a^{-1})^{-1} = a$. |
ii) | Let $a, b \in G$ be elements of the group $(G, \circ)$. It is shown that the inverse element of $a \circ b$ consists of $b^{-1} \circ a^{-1}$ by demonstrating that the combination of the two elements results in the neutral element $e$. |
\begin{aligned}
(a \circ b) \circ (b^{-1} \circ a^{-1}) &= a \circ (b \circ b^{-1} ) \circ a^{-1} \\
&= a \circ e \circ a^{-1} \\
&= a \circ a^{-1} \\
&= e
\end{aligned}