Definition of a Linear Mapping
Let $V$ and $W$ be $K$-vector spaces. A mapping
\[
f : V \to W
\]
is called \textit{linear} if
i) | $f(x + y) = f(x) + f(y)$ for all $x, y \in V$, |
ii) | $f(\lambda x) = \lambda f(x)$ for all $\lambda \in K$ and $x \in V$. |
Let $V$ and $W$ be $K$-vector spaces. A mapping
\[
f : V \to W
\]
is called \textit{linear} if
i) | $f(x + y) = f(x) + f(y)$ for all $x, y \in V$, |
ii) | $f(\lambda x) = \lambda f(x)$ for all $\lambda \in K$ and $x \in V$. |