Definition Subgroup

Let $G$ be a group. A subset $U \subset G$ is called a subgroup of $G$ if:

1.

$e \in U$ (Neutral element of $G$ is in $U$)

2.

$a, b \in U \Rightarrow a \circ b \in U$ (Closure)

3.

$a \in U \Rightarrow a^{-1} \in U$ (Inverses)

Beweis