Remark 1 on Groups
Let
i) | If |
ii) | Let |
iii) | There is exactly one neutral element |
iv) | For each element, there is exactly one inverse element |
Beweis
i) | According to the definition of groups G3, for \begin{align*} a \circ a' &= e \circ (a \circ a') \ &\text{here the neutral element } e \text{ is replaced by } a'' \circ a' \ &= (a'' \circ a') \circ (a \circ a') \ &\text{according to G1, it does not matter which elements are combined first} \ &\overset{\text{G1}}{=} a'' \circ ((a' \circ a) \circ a') \ &\text{Since } a' \circ a \text{ results in the neutral element } e, \text{ it can be replaced} \ &\overset{\text{G3}}{=} a'' \circ (e \circ a') \ &\text{The combination with the neutral element } e \text{ does not change the element } a' \ &\overset{\text{G2}}{=} a'' \circ a' \ &\text{since } a'' \text{ is the inverse element to } a', \text{ this results in the neutral element } e \ &= e. \end{align*} |
ii) | It holds that \begin{align*} a \circ e &\overset{\text{G3}}{=} a \circ (a' \circ a) \ &\text{the neutral element } e \text{ is replaced by } a' \circ a \ &\overset{\text{G1}}{=} (a \circ a') \circ a \ &\text{according to G1, it does not matter which elements are combined first} \ &\overset{(i)}{=} e \circ a \ &\text{due to (i), since } a \circ a' = e, \text{ the term } a \circ a' \text{ can be replaced by } e \ &\overset{\text{G2}}{=} a. \end{align*} |
iii) | Let \begin{align*} e' &\overset{\text{G2}}{=} e' \circ e \ &\overset{(ii)}{=} e \end{align*} because the combination with a neutral element according to (i) does not change the element it is combined with (even if the element it is combined with is the neutral element). |
iv) | Let \begin{align*} a' &= a' \circ e \ &\text{since } a^{*} \text{ is an inverse element to } a, \text{ } e \text{ can be replaced by } a \circ a^{*} \ &= a' \circ (a \circ a^{*}) \ &= (a' \circ a) \circ a^{*} \ &= e \circ a^{*} \ &= a^{*} \end{align*} |